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1 Summary

Often it is necessary to calculate the uncertainty of derived quantities. This
procedure and convention is called propagation of error. Calculating the prop-
agation of error formula requires knowing how to take derivatives. We give the
propagation of error formulas for a single variable and multiple independent
variable functions. We list some common error propagation formulas that work
in most cases. Step by step error propagation can often be used as a shortcut
to calculate the uncertainty. If we know the error propagation formula we can
find the terms that are causing the most uncertainty and try to reduce these
dominant errors. It is useful to write a short MATLAB script to calculate error
propagation, especially when the formula is complex or a lot of significant digits
are involved.

2 How error propagates

As a math problem, I ask you to add 5.2 and 10.11. The result is straightforward
15.31. The numbers have different numbers of digits and precision. 5.2 is precise
to the tenths while 10.11 is precise to the hundredths. This is not a problem in
mathematics, but the situation is more subtle in error analysis. To see what is
going on you need to look at the uncertainties.

Now, if I ask you to add 5.2±1.2 and 10.11±0.76 then what do you do? The
first thing you want to ask yourself is if these numbers are properly reported
measurements. After a quick check, we see there are two digits of uncertainty
that match the precision of the measurement. In error analysis, you still add the
numbers to find the sum, but to find the combined error we need a propagation
of error formula. In this situation, the rule is

σA+B =
√
σ2
A + σ2

B = 1.4204 . . .

This chapter is all about finding the rules like this. We can now calculate the
uncertainty σA+B = 1.4204 → 1.4 and round to two significant digits. Then
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we match the precision of the calculated quantity to the uncertainty. Our final
result is that

(5.2± 1.2) + (10.11± 0.76) = 15.31± 1.4204→ 15.3± 1.4

Notice that if you always start with uncertainties that have two significant
digits, you get out a result that has two significant digits of uncertainty. You
don’t have to worry that the first number 5.2 has only two significant digits,
but the final result 15.3 has three significant digits. This comes about naturally
by the golden rule of two significant digits of uncertainty.

There are error propagation rules for single variable functions and multiple
variable functions. The single variable situation is not too complicated. You
just need to understand differential calculus. For the situation with multiple
variables functions, you have to worry if the variables are correlated or indepen-
dent. In most cases, we don’t have to worry about correlations and the formulas
are straightforward.

3 Rules of differential calculus refresher

We now do a little review of differentiation because we need derivatives for error
propagation. Ordinary derivatives are needed for a single variable function, and
partial derivatives are needed for multiple variable functions. The derivative is
defined in calculus as

f ′(x) =
df

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x

The following list contains the basic formulas to master differential calculus.

c′ = 0 x′ = 1 (xn)′ = nxn−1 |x|′ =
|x|
x

(cu)′ = cu′ (c1u+ c2v)′ = c1u
′ + c2v

′

(uv)′ = u′v + uv′ (1/u)′ = −u′/u2 (u/v)′ =
u′v − uv′

v2

f(u(x))′ =
df

du

du

dx
= f ′(u)u′(x)

(ex)′ = ex (ax)′ = ax ln a (lnx)′ =
1

x
(loga x)′ =

1

x ln a

d

dx
sinx = + cosx

d

dx
tanx = + sec2 x

d

dx
secx = + secx tanx

d

dx
cosx = − sinx

d

dx
cotx = − csc2 x

d

dx
cscx = − cscx cotx

d

dx
sinhx = + coshx

d

dx
tanhx = +sech2x

d

dx
sechx = −sechx tanhx
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d

dx
coshx = + sinhx

d

dx
cothx = −csch2x

d

dx
cschx = −cschx cothx

d

dx
arcsinx = +

1
√

1− x2

d

dx
arctanx = +

1

1 + x2

d

dx
arcsecx = +

1

|x|
√
x2 − 1

d

dx
arccosx = −

1
√

1− x2

d

dx
arccotx = −

1

1 + x2

d

dx
arccscx = −

1

|x|
√
x2 − 1

d

dx
arsinhx = +

1
√
x2 + 1

d

dx
artanhx = +

1

1− x2

d

dx
arsechx = −

1

x
√

1− x2

d

dx
arcoshx = +

1
√
x2 − 1

d

dx
arcothx = +

1

1− x2

d

dx
arcschx = −

1

|x|
√

1 + x2

The partial derivative is like the normal derivative except you hold the other
variables constant when you take it. Here is the definition

∂f(x, y)

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x

∂f(x, y)

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y

For example, if we wanted to find all the partial derivatives of f(x, y, z) =
xy2z3 we would use the power rule (xn)′ = nxn−1. There are three possible
partial derivatives

∂f

∂x
= y2z3 ∂f

∂y
= 2xyz3 ∂f

∂z
= 3xy2z2

4 Error propagation with one variable

If we have measured Q± σQ then the uncertainty in Q(A) is given by

σQ = |Q′(A)|σA

I assume you are familiar with differentiation. One can use a program like
Mathematica or your graphing CAS calculator to find derivatives.

Example 4.1. The volume of a cube from error propagation. Suppose a
machinist has constructed a precise cube on a milling machine, and you want
to find its volume. You repeatedly measure one of the sides to be

s = 1.053± 0.010 cm

What is the volume and its uncertainty assuming the length, width, and height
are identical?
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Solution 4.1. We calculate the volume as V = s3 and wait to round until
we know the uncertainty.

V = (1.053 cm)3 = 1.16757587 . . . cm3

To find the uncertainty we use the error propagation formula

σV = |V ′(s)|σs = 3s2σs

σV = 3(1.053 cm)2(0.010 cm) = 0.033502 cm3

After rounding we get V = 1.168(34) cm3.

5 Error propagation with multiple independent
variables

Often we want to calculate some quantity that requires a series of individual
measurements that must be combined. For example, if we wanted to calculate
A/B we would first measure A then measure B and then we could calculate
A/B. If we are doing error analysis, then to find the error in A/B we will need
to apply a formula of error propagation. There is a significant simplification if
the two quantities are thought to be independent like the charge and mass of
an electron. The error propagation formula for multiple independent variables
labeled a1, a2, . . . , aM is given by

σ2
f =

M∑
j=1

(
∂f

∂aj

)2

σ2
aj

We will often use the notation that a1 = A a2 = B for simplification when we
do calculations. Propagation of error for two independent variables is given by

σ2
f =

(
∂f

∂A

)2

σ2
A +

(
∂f

∂B

)2

σ2
B

Example 5.1. Show that σA±B =
√
σ2
A + σ2

B

Solution 5.1. Evaluating the partial derivatives

∂(A±B)

∂A
= 1

∂(A±B)

∂B
= ±1

Applying the error propagation formula we have

σA±B =
√

(1)2σ2
A + (±1)2σ2

B =
√
σ2
A + σ2

B
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Example 5.2. Find the perimeter of a rectangle of l = 1.25(22) and w =
4.44(33)

Solution 5.2. The perimeter is equal to P = 2(l + w) We can find the
perimeter by plugging in the values P = 2(1.25 + 4.44) = 11.3800 . . . We can
find the uncertainty by applying the propagation of error formula

σ2
P =

(
∂P

∂l

)2

σ2
l +

(
∂P

∂w

)2

σ2
w

σP =
√

4σ2
l + 4σ2

w =
√

4× 0.222 + 4× 0.332 = 0.7932 . . .

σP → 0.79

Our final answer is P = 11.38± 0.79

Example 5.3. If Q = AB, then show that

σAB = |AB|

√
σ2
A

A2
+
σ2
B

B2

Solution 5.3. Evaluating the partial derivatives

∂(AB)

∂A
= B

∂(AB)

∂B
= A

Applying the error propagation formula we have

σAB =
√
B2σ2

A +A2σ2
B

Divide both sides by |AB|.

σAB

|AB|
=

1

|AB|

√
B2σ2

A +A2σ2
B =

√
σ2
A

A2
+
σ2
B

B2

Example 5.4. If Q = A/B, then show that

σAB = |A/B|

√
σ2
A

A2
+
σ2
B

B2

Solution 5.4. Evaluating the partial derivatives

∂(A/B)

∂A
= 1/B

∂(A/B)

∂B
= −A/B2
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Applying the error propagation formula we have

σA/B =
√

(1/B)2σ2
A + (A2/B4)σ2

B

Divide both sides by |A/B|.

σA/B

|A/B|
=

1

|A/B|

√
(1/B)2σ2

A + (A2/B4)σ2
B =

√
σ2
A

A2
+
σ2
B

B2

6 Common error formulas

• Q = A+B then σQ =
√
σ2
A + σ2

B

• Q = A−B then σQ =
√
σ2
A + σ2

B

• Q = AB then
σQ

|Q|
=

√
σ2
A

A2
+
σ2
B

B2

• Q = A/B then
σQ

|Q|
=

√
σ2
A

A2
+
σ2
B

B2

• Q = AB/C . . . then

σQ

|Q|
=

√
σ2
A

A2
+
σ2
B

B2
+
σ2
C

C2
+ . . .

• Q = AaBB/Cc . . . then

σQ

|Q|
=

√
a2σ2

A

A2
+
b2σ2

B

B2
+
c2σ2

C

C2
+ . . .

Many formulas in physics are of the last form. For example, F = GmM/r2 or
ω =

√
k/m.

7 Error propagation step by step

Suppose we want to compute the error in the formula

Q(A,B,C,D) =
A+B

C +D
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It is convenient to do it step by step. Find the uncertainty in the numerator
and denominator individually then combine the results. We can let Y = A+B
and Z = C +D then find the uncertainties in Y and Z first.

σY =
√
σ2
A + σ2

B σZ =
√
σ2
C + σ2

D

We can then calculate the uncertainty for Y/Z which would be

σQ

|Q|
=

√
σ2
Y

Y 2
+
σ2
Z

Z2

You can check for yourself that you get the same result as if you did the calcu-
lation in one step.

If the formula was

f =
A−B
A+B

then we couldn’t do it step by step the same way because the numerator and
the denominator contain the same variables that repeat. The partial derivatives
of the numerator and denominator cannot be separated.

8 The dominant error

The error propagation formula tells you where you should focus your efforts if
you want to reduce the uncertainty in a derived quantity.

Example 8.1. Suppose you are calculating g from experiments with a pen-
dulum with small oscillations.

ω2 = g/l g = 4π2 l

T 2

If the fractional uncertainty in the length and period are both ten percent,
then how should you proceed to improve the experimental determination of
g?

Solution 8.1. The error propagation formula for this situation. We can
easily write down the error propagation formula

σg

g
=

√
σ2
l

l2
+ 4

σ2
T

T 2

If the fractional uncertainty in the length is 10 percent and the fractional
uncertainty in the period is 10 percent then the expression in the square root
is √

0.12 + 4× 0.12

Clearly measuring the period more precisely will have the largest effect on
reducing the dominant error in the uncertainty.
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9 MATLAB examples

Example 9.1. Finding the uncertainty in eN . Let N = 3.2524(35) find
Q(N) = eN and the uncertainty.

Solution 9.1. We know that (ex)′ = ex. So we easily calculate the uncer-
tainty using

σQ = |eN |σN = eNσN

Here is what the Matlab code looks like to calculate that.

format long;

N = 3.2524;

sigN = 0.0035;

f = exp(N)

sigf = exp(N)*sigN

>> f = 25.852311068629906

>> sigf = 0.090483088740205

We do the rounding and find f = 25.852(90)

Example 9.2. Finding the uncertainty in sin(θ). What is the uncertainty
in Q = sin(θ) when θ = 30.0◦ ± 2.5◦?

Solution 9.2. First we convert the numbers to radians. The error propaga-
tion formula is then

σQ = | cos θ|σθ
It is easy to do all these calculations in Matlab.

format long;

t = 30;

sigt = 2.5;

trad = 30 * pi/180;

sigtrad = 2.5 * pi/180;

df = cos(trad)*sigtrad

f = sin(trad)

>> 0.03778748675488

>> 0.50000000000000

So the answer is sin θ = 0.500(38).

Example 9.3. Finding the Stefan Boltzmann constant and its uncertainty.
What is the value and uncertainty of the Stefan Boltzmann constant

σ =
π2k4

B

60h̄3c2
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Solution 9.3. It’s funny that the notation for the Stefan Boltzmann con-
stant is already σ, don’t get confused. The propagation of error formula is a
common one.

σσ = σ

√
42
σ2
kB

k2
B

+ 32
σ2
h̄

h̄2

Since c is defined it has no uncertainty. Also constant factors like π or
√

2
have no uncertainty. A quick google for ”NIST hbar”, ”NIST c”, and ”NIST
Boltzmann’s constant” gives the necessary data.

format long;

hb = 1.054571800e-34;

shb = 0.000000013e-34;

c = 299792458;

kb = 1.38064852e-23;

skb = 0.00000079e-23;

SB = pi^2/60 * kb^4/(c^2*hb^3)

sigSB = SB*(16*skb^2/kb^2+9*shb^2/hb^2)^(0.5)

>> 5.670366818327269e-08

>> 1.297991325923970e-13

The uncertainty is 0.000013× 10−8 J m−2s−1K−4. So the final result is

σ = 5.670367(13)× 10−8Jm−2s−1K−4

This calculation agrees with the NIST 2016 value.
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