Zależność energia-wysokość dla źródeł twardego promieniowania rentgenowskiego

Zależność energia-wysokość

Brown, J., 1971, Sol. Phys., 18, 489 Brown, J. and McClymont, A.N. 1976, Sol. Phys., 49, 329 Brown, J et al., 2002, Sol. Phys., 210, 373

 $E(E_0, N) = (E_0^2 - 2KN)^{1/2}$ $N_{s}(E_{0}) = \frac{E_{0}^{2}}{2K}$ $N_{s}(z) = \int^{z_{max}} n(z')dz'$

n(z)

Obserwacje wysokości źródeł HXR

Brown, J.C. i in., 1983, Sol. Phys. 88, 281

- * International Sun Earth Explorer 3 (ISEE 3)
- * Pioneer Venus Orbiter (PVO)
- * h=0.0 2.5Mm (150 keV)

Matsushita, K. i in., 1992, Publ. Astron. Soc. Japan 44, L89

* ҮОНКОН

*
$$h_{14}$$
 = 9.7 ± 2.0 Mm (L)

*
$$h_{23}$$
- h_{14} = -1.0 ± 0.3 Mm

- * h_{33} - h_{14} = -2.0 ± 0.5 Mm
- * h_{53} - h_{14} = -3.2 ± 0.7 Mm

Takakura, K. i in., 1987, Sol. Phys. 107, 109

* h=7.0 \pm 3.5 Mm

Fletcher, L., 1996, A&A 310, 661

* $n_e = 2 \times 10^{10} - 3 \times 10^{11} \text{ cm}^{-3}$ * L = 13 - 27 Mm

Aschwanden, M.J. i in., ApJ 517, 977

- * ҮОНКОН
- * h_{23} - h_{14} = -0.98 ± 0.25 Mm
- * h_{33} - h_{23} = -0.31 ± 0.3 Mm

Obserwacje wysokości źródeł HXR

Aschwanden, M. J., Brown, J. C., and Kontar, E. P., 2002, Solar Phys. 210, 383

Aschwanden i in. 2002, Solar Phys. 210, 383

$$z(\varepsilon) = z_0 \left(\frac{\varepsilon}{20keV}\right)^{-a} + r_0$$

Aschwanden i in. 2002, Solar Phys. 210, 383

Aschwanden i in. 2002, Solar Phys. 210, 383

Brown, J.C. i in., 1983, Sol. Phys. 88, 281 150 keV h=0.0 – 2.5Mm

Takakura, K. i in., 1987, Sol. Phys. 107, 109

20 - 40 keV h=7.0 \pm 3.5 Mm

Matsushita, K. i in., 1992, PASJ 44, L89

* $h_{14} = 9.7 \pm 2.0 \text{ Mm}$ (L) * h_{23} - $h_{14} = -1.0 \pm 0.3 \text{ Mm}$ * h_{33} - $h_{14} = -2.0 \pm 0.5 \text{ Mm}$ * h_{53} - $h_{14} = -3.2 \pm 0.7 \text{ Mm}$

Aschwanden, M.J. i in., ApJ 517, 977

*
$$h_{23}$$
- h_{14} = -0.98 ± 0.25 Mm
* h_{33} - h_{23} = -0.31 ± 0.3 Mm

Mrozek 2006

luty 2002 r. – luty 2004 r. 17 zjawisk 37 zależności E-H

Mrozek 2006

Mrozek 2006

Parowanie chromosfery

Nagai, F. i Emslie, A.G., 1984, ApJ 279, 896

V<200 km/s

Wiązka elektronów jest dobrym "narzędziem" mierzącym gęstość chromosfery

Kontar, E.P. i in. 2008, A&A 489, L57

6.01.2004 r. M6.0

Kontar, E.P. i in. 2008, A&A 489, L57

Kontar, E.P. i in. 2008, A&A 489, L57

Aschwanden i in. 2002, Solar Phys. 210, 383

Rozmiary źródła maleją, ale zwężanie rury magnetycznej nie jest jedynym efektem (nie jest nawet dominującym).

Prato, M. i in. 2009, ApJ 706, 917

Lp.	(1)	(2)	(3)	(4)	(5)
1	06 III 2004	12:11:56	M 1.3	S15E89	987
2	18 III 2004	06:00:40	C 3.7	N15E89	972
3	$17~\mathrm{V}~2004$	04:13:52	C 7.0	S07W85	943
4	$17 \ \mathrm{VII} \ 2004$	19:16:20	C 5.3	N07E85	943
5	$18 \ \mathrm{VIII} \ 2004$	17:31:24	X 1.8	S13W89	964
6	$12 \ IX \ 2004$	18:29:52	C 2.0 $$	S09W68	885
7	01 XI 2004	06:57:44	C 2.9	N12W83	941
8	23 XI 2004	15:04:24	C 6.5	S06E89	989
9	$21 \ \mathrm{I} \ 2005$	00:21:08	C 5.8	N17W74	915
10	21 I 2005	10:12:56	M 1.7	N19W89	961
11	$05~\mathrm{V}~2005$	20:11:16	C 7.8	S06W64	857
12	$09~\mathrm{V}~2005$	18:44:44	B 9.7	N14E64	860
13	$30~\mathrm{VII}~2005$	06:27:44	X 1.3	N08E59	822
14	$22~\mathrm{VIII}~2005$	17:01:20	M 5.6	S16W64	865
15	08 IX 2005	16:54:52	M 2.1	S14E89	948
16	19 IX 2005	16:39:16	B 3.2	S12,W77	925

luty 2004 – luty 2006

r > 800 arcsec >200 zliczeń (12 – 25 keV)

14 rozbłysków 36 zależności E-H

Obrazy rekonstruowane metodą CLEAN

RHESSI

9 detektorów (Ge) 7.1 x 8.5 cm zakres energii: 3 keV – 20 MeV rozdzielczość czasowa:

2 s (połowa okresu rotacji) <1 s (po demodulacji) rozdzielczość energetyczna: 1-3 keV (dla różnych detektorów)

RHESSI

Obraz rekonstruowany przy użyciu kilku metod: Back Projection, CLEAN, PIXON, MEM NJIT, UV Smooth, Forward Fit VIS

rozdzielczość czasowa: >2s rozdzielczość przestrzenna: > 2.5 arc sec (silnie zależy od użytych detektorów)

obraz pojedynczego źródła otrzymany przy użyciu detektora 5

CLEAN, (33 iteracje, det 3-6)

skalowane rzeczywistą jasnością

CLEAN

Hurford i in. 2002, Sol. Phys. 210

CLEAN nie zmienia położenia najjaśniejszego piksela – pozwala określić położenie źródeł z błędem < 1 arcsec

przedział czasu zawiera jeden impuls lub dzieli go na kilka fragmentów

przedziały energetyczne wystarczająco gęste, aby zapewnić dobre dopasowania zależności E-H

1000

0

0

10

20

30

Energia [keV]

1000

50

60

40

0

10

20

30

Energia [keV]

40

50

60

dopasowanie dwoma funkcjami (1) hiperboliczna: $z(\varepsilon) = \frac{a_0}{\varepsilon - a_1} + a_2$ (2) potęgowa:

 $z(\varepsilon) = a_0 \varepsilon^{a_1} + a_2$

definicja punktu wypłaszczenia za pomocą:

- symetralnej dla (1)
- pochodnej dla (2)

zwarte źródła

charakterystyki obserwacyjne

energia pw

wysokość pw

potęgowa

hiperboliczna

charakterystyki obserwacyjne

wysokość punktu wypłaszczenia z wyznaczona względem poziomu fotosfery

grubość obszaru hamowania

potęgowa

hiperboliczna

gęstości

Ewolucja w czasie

źródła szczytowe

16-18 keV

Co dalej?

 -ujednolicenie wyników
(jedna metoda dla wszystkich obserwowanych zjawisk)

 -uzupełnienie listy zjawisk (dodanie kilku rozbłysków położonych na tarczy)

-modelowanie propagacji wiązki w pętli rozbłyskowej